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Sequential recommendation aims to recommend the next items that a target user may have interest in based
on the user’s sequence of past behaviors, which has become a hot research topic in both academia and industry.
In the literature, sequential recommendation adopts a Sequence-to-Item or Sequence-to-Sequence training
strategy, which supervises a sequential model with a user’s next one or more behaviors as the labels and
the sequence of the past behaviors as the input. However, existing powerful sequential recommendation
approaches employ more and more complex deep structures such as Transformer in order to accurately
capture the sequential patterns, which heavily rely on hand-crafted designs on key attention mechanism to
achieve state-of-the-art performance, thus failing to automatically obtain the optimal design of attention
representation architectures in various scenarios with different data. Other works on classic automated deep
recommender systems only focus on traditional settings, ignoring the problem of sequential scenarios. In this
article, we study the problem of automated sequential recommendation, which faces two main challenges: (1)
How can we design a proper search space tailored for attention automation in sequential recommendation, and
(2) How can we accurately search effective attention representation architectures considering multiple user
interests reflected in the sequential behavior. To tackle these challenges, we propose an automated disentangled
sequential recommendation (AutoDisenSeq) model. In particular, we employ neural architecture search (NAS)
and design a search space tailored for automated attention representation in attentive intention-disentangled
sequential recommendation with an expressive and efficient space complexity of$ (=2) given = as the number
of layers. We further propose a context-aware parameter sharing mechanism taking characteristics of each
sub-architecture into account to enable accurate architecture performance estimations and great flexibility
for disentanglement of latent intention representation. Moreover, we propose AutoDisenSeq-large language
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model (LLM), which utilizes the textual understanding power of LLM as a guidance to refine the candidate
list for recommendation from AutoDisenSeq. We conduct extensive experiments to show that our proposed
AutoDisenSeq model and AutoDisenSeq-LLM model outperform existing baseline methods on four real-world
datasets in both overall recommendation and cold-start recommendation scenarios.

CCS Concepts: •Computingmethodologies→Artificial intelligence;Machine learning; • Information
systems→ Collaborative filtering;

Additional Key Words and Phrases: Recommender systems, sequential modeling, disentangled representation
learning, automated machine learning
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1 Introduction
Sequential recommendation aims to recommend the next (sequence of) items to a target user
based on the sequence of his/her historical behaviors in web services and mobile applications as
input, such as rate, watch, comment, favorite, click, and so on. Motivated by the power of deep
learning in modeling sequential data, recent research works [51, 59, 117, 136] have gained huge
success on sequential recommendation with deep sequential models such as self-attention networks
(aka. Transformers) [28, 123]. Nevertheless, these works heavily rely on manual design to obtain
self-attention representations for sequential patterns capture, where various functional structures,
including convolutional neural networks (CNN), recurrent neural networks (RNN), Graph
Attention Network, and Graph Convolutional Network are manually stacked or combined to
calculate Key, Query, and Value from the input data [28, 79, 123, 124]. These hand-crafted designs of
attention representations cost numerous trial-and-error human labors and tend to be sub-optimal
due to human bias, thus making it difficult to fit in real-world sequential recommendation scenarios.

To solve this problem, we propose for the first time to study automated sequential recom-
mendation through neural architecture search (NAS) on the attention mechanism. However,
investigating automated sequential recommendation poses the following challenges:

—How to design a proper search space tailored for attention automation in sequential recommender
systems? Recent sequential models utilize various self-attention blocks to capture the se-
quential patterns of interests hidden in user behaviors. A proper attention search space may
significantly increase the possibility of obtaining the optimal self-attention representations
for downstream sequential recommendation.

—How to accurately search effective attention representations considering multiple user interests
reflected in the sequential behavior? Users tend to have diverse and multiple intentions in real-
world scenarios. It is crucial for the search strategy to discover the most appropriate attention
representations so that the latent deep representations can cover diverse and multiple user
intentions.

To tackle these challenges, we propose automated disentangled sequential recommendation
(AutoDisenSeq) model, which is able to automatically discover powerful attention representations
for sequential recommendation while keeping intention disentangled in latent space. Our proposed
self-attention automation can further obtain the adaptive extractions of multiple user interests
in different scenarios through intention disentanglement, where a given sequence of behaviors
is encoded into multiple representations, each of which characterizes a unique user intention.

ACM Transactions on Information Systems, Vol. 43, No. 2, Article 29. Publication date: January 2025.

https://doi.org/10.1145/3675164


Automated Disentangled Sequential Recommendation with Large Language Models 29:3

Particularly, we design a search space tailored for automated attention representation in attentive
intention-disentangled sequential recommendation with an expressive and efficient space complex-
ity of$ (=2) given = as the number of layers. We further propose a context-aware parameter sharing
mechanism taking characteristics of each sub-architecture into consideration to obtain accurate
architecture performance estimations and great flexibility for disentanglement of latent intention
representations. Moreover, we discover that the ranking list of candidate items returned from
AutoDisenSeq may not always have the optimal order. Therefore, we propose a large language
model (LLM) variant, AutoDisenSeq-LLM, through employing the textual understanding power
of LLM as a guidance to reorder the candidate list for recommendation from AutoDisenSeq. As
such, the strength of LLM in understanding item characteristics via textual descriptions such as
title of a movie, content and price of a video game and so on can help to boost recommendation
performance. We conduct extensive experiments to show that both of our proposed AutoDisenSeq
and AutoDisenSeq-LLM models are able to outperform existing baseline methods on several real-
world datasets in overall and cold-start recommendation scenarios, validating the advantages of
automating the attention representation and utilizing LLM in sequential recommendation.

To summarize, our main contributions are listed as follows:
—We propose an AutoDisenSeq model, which is able to discover the optimal self-attention rep-
resentations capable of capturing sequential patterns in sequential recommendation through
NAS.

—We propose a tailored search space supporting the joint search for attention representations
and other functional blocks to discover optimal deep architectures for sequential modeling
with a space complexity of $ (=2) given = as the number of layers.

—We propose a context-aware parameter sharing mechanism for automated attention represen-
tation in sequential recommendation, which takes special characteristics of each architecture
into account to provide reliable architecture evaluations for parameter sharing in our search
space, providing great flexibility to intention disentanglement in latent space.

—We propose AutoDisenSeq-LLM, an LLM guided variant that further refines the ranking of can-
didate items via utilizing the textual understanding power of LLM for better
recommendation.

—Extensive experiments empirically demonstrate the superiority of our proposed AutoDis-
enSeq and AutoDisenSeq-LLM against state-of-the-art baseline approaches in both overall
recommendation and cold-start recommendation scenarios.

The remainder of this article is organized as follows. We review related works in Section 2,
followed by our detailed discussions on our proposed AutoDisenSeq and AutoDisenSeq-LLM in Sec-
tion 4.We then describe our experimental settings as well as empirical results in Section 5. At last, we
summarize the whole article and point out future works deserving further investigation in Section 6.

2 Related Work
In this section, we review related works on sequential recommendation, disentangled representation,
self-attention representation design, NAS, and LLM for recommendation.

2.1 Sequential Recommendation
Traditional recommendation systems (RS) typically employ collaborative filtering [27, 56, 107,
109, 113], particularly the matrix factorization-based [66, 112] approaches for mining user pref-
erences hidden in their historical behaviors. Furthermore, the emergence of deep learning has
significantly propelled research in this area [22, 50, 76, 77, 125, 151]. However, these pioneering
works often overlook the sequential patterns inherent in user interactions within RS. To address this
gap, some researchers have developed methods to model user sequential behaviors using first-order
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or higher-order Markov chains [46, 47, 49, 108, 119, 126]. Motivated by the expressive power of
sequential models with deep architectures, recent sequential recommendations [11, 16, 51, 52, 57, 59,
71, 74, 84, 85, 117, 119, 130, 137, 143, 148, 151] make greater achievements by resorting to advanced
deep models including RNN, CNN, and the state-of-the-art self-attention models, Transformer
[28, 91, 123]. Recent transformer-based sequential models including SASRec [60], which stacks
self-attention blocks to model user intentions and Bidirectional Encoder Representations from
Transformers (BERT) 4Rec [117], which adopts the Cloze objective and utilizes the left and right
context to predict the masked item. However, existing transformer-based sequential recommenda-
tion models usually rely on hand-crafted designs of attention representations, which are fixed and
sub-optimal to various recommendation scenarios.

2.2 Disentangled Representation Learning
Disentangled representations capture distinct explanatory factors inherent in observations across
different dimensions of the vectorized representation [3, 67, 127]. There have been various ap-
proaches proposed to enforce disentanglement in learned representations. For example, some
methods reframe variational autoencoders [63] from an information-theoretic perspective and
derive various regularization terms that minimize the mutual information among different parts of
the representations [5, 14, 53, 61]. Others investigate disentangling factors behind an observation
from the perspective of mixture data samples [4, 15, 29, 31, 58]. The concept of disentanglement
finds application across diverse data types, including images [32, 54, 65, 68, 92, 154], texts [48],
multimedia [12, 13, 132], and graphs [44, 72, 73, 89, 146, 149]. Recently, several recommendation
algorithms based on representation learning [10, 70, 83, 90, 91, 128, 129, 131] have been proposed
to disentangle and preserve the multiple intentions of target users via dynamic routing, prototype-
based clustering, overlapped community detection, and so on. Our work differs from the literature
in that we adopt an automated attention architecture to disentangle the user intentions, which are
dynamic to different recommendation domains.

2.3 Self-Attention Representation
The attention mechanism was initially introduced to enable models to selectively focus on relevant
segments of source sentences during translation of subsequent words [1, 87]. Subsequently, attention
evolved beyond textual alignment in translations and found widespread application across various
research domains [18, 26, 97, 116, 123, 140, 142] with manually designed information flows of Key,
Query, and Value representations.

Designing powerful attention involves two primary steps: (1) derivation of Key, Query, and Value
representations, and (2) attention calculation. The latter step has already received a lot of research
interests [24, 64, 114]. Bahdanau et al. and Luong et al. [1, 87] are among the first to propose the
concept of attention. Their encoder-decoder attention mechanisms help previous Long Short-Term
Memory to align the target sentence and source sentence during translation. However, these early
attention mechanisms limited decoder attention to the last encoder layer, neglecting information
from other layers. The encoder–decoder attention is then improved and applied to many other
research areas [20, 30, 69, 86, 96, 98, 145]. Lee et al. [69] and Lu et al. [86] extended attention
to multi-modal fusion with cross-modal co-attention. Nguyen and Okatani [98] densely stacked
co-attention layers to model encoder–decoder relations. Yu et al. [145] further explore various
representation design approaches. Despite the strengths of attention mechanisms, crafting attention
representations requires careful design and domain expertise, often leading to sub-optimal results
due to inherent human biases.

Unlike the second step mentioned above, the first step, i.e., designing Key, Query, and Value of
attention, has not been largely explored for a long time, although it is as important as the second.
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The milestone is self-attention proposed by Vaswani et al. [123]. It helps achieve improvements in
many research fields [24, 124]. It abandons the traditional recurrent structure and only relies on
self-attention to extract relational features from data. It constrains the source layer of Key, Query,
and Value to be the same and just merely uses separate linear transformations to deal with the
difference. However, this constraint design increases the optimization difficulty because one layer
needs to act as Key, Query, and Value at the same time [25]. At the same time, the interaction of
information among different layers is also ignored. The power of linear transformation is limited to
discriminating Query and Key, leading to sub-optimal results.

In our work, we focus on automating self-attention representation for sequential recommendation.
Unlike prior approaches reliant on human expertise, we propose an automatic framework utilizing
NAS to design attention representations, capturing sequential patterns and exploiting semantic
meanings stored in different layers.

We remark that our automation of attention representation is orthogonal to other research topics
in attention design area, such as computation efficiency [19, 64, 120] and power exploitation [24,
94, 106], which can simply be employed to make our framework more efficient and powerful.

2.4 NAS
NAS aims to design optimal architectures tailored to specific tasks and has gained increasing
popularity in recent years [81, 95, 101, 155]. A variety of search algorithms including reinforcement
learning [101, 155], evolutionary algorithm (EA) [42, 115, 156], gradient-based algorithm [81,
95], and Bayesian Optimization have been developed to tackle the NAS problem across various
domains such as Computer Vision [80, 95, 153], Natural Language Processing (NLP) [115, 134],
Graph Representation Learning [7, 8, 37, 39, 102, 105, 138, 141, 150, 152], and so on. Moreover, the
search efficiency can be significantly boosted by introducing parameter-sharing [101], one-shot
formulation with supernet [42], and soft-relaxation of search space [81]. However, these techniques
speed up the training process at the cost of eliminating the difference in operations [21], so it
becomes difficult to model the relations among different operation choices, especially when the
operation choices are highly relevant with their contexts. In this study, we propose automating
attention representation design through NAS with context-aware parameter sharing to enhance
performance in sequential recommendation tasks.

Our work is also related to the search space design of NAS, which receives increasing research
focus with the success of NAS. Zoph and Le [155] propose the first search space for CNN and RNN,
which is optimized for the full model architecture. Later, the cell-based search space was proposed
[156] and further advanced by many other works [6, 9, 35, 81, 95, 101, 139] for its higher efficiency
and generality. Though the search space design over other architectures is also popular [37, 80, 111,
115, 152], few of them consider attention when designing search space.

Recent works [37, 115, 134, 144, 152] utilize self-attention or encoder–decoder attention in their
space design to search for Transformer or Graph Neural Network-styled architectures, which merely
consider attention as a candidate primitive operation. The input design for attention is still fixed
to certain layers, leading to sub-optimal solutions. There are also some works [88, 133] focusing
on the calculation of attention given Key, Query, and Value, which can be seen as automating
attention computation (the second step for designing attention as discussed in Section 2.3), thus
being orthogonal to our automation of attention representation in this article.

2.5 LLM for Recommendation
LLM for recommendation refers to the application of LLM on RS. Given the demonstrated efficacy
of LLMs in NLP, researchers are exploring avenues to extend their utility. One of the promising
domains that LLM can be adapted to is recommendation. RS, reliant on deep learning methods
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[22, 50, 76, 77, 125, 151], face challenges in generalization, explanation, and reasoning despite their
ability to model user–item interactions. Consequently, recent efforts have focused on integrating
LLMs into recommendation, categorized into three branches [33]: pretraining-based, finetuning-
based, and prompting-based approaches. Pretraining-based methods emulate common NLP tasks
such as masked language modeling and next token prediction to pretrain recommendation models.
For instance, PTUM [135] employs Masked Behavior Prediction and Next K Behavior Prediction
tasks, M6 [23] utilizes text-infilling and auto-regressive language generation objectives, and P5
[38] employs multi-mask modeling and amalgamates datasets from diverse recommendation tasks.
Finetuning-based methods seek to transfer LLM knowledge to the recommendation domain. For
example, RecLLM [36] fully finetunes LaMDA [121] as a conversational recommender system
for YouTube video recommendations, while TallRec [2] refines the LLaMA-7B model [122] in a
parameter-efficient manner based on LoRA [55]. Prompting-based methods leverage the advantages
of prompting to align LLMs with the recommendation domain. For example, Liu et al. [82] teach
ChatGPT how to act as recommender systems by in-context learning, Guo et al. [41] encode mutual
information for cross-domain recommendations into soft prompts for prompt tuning, and Zhang
et al. [147] design recommendation-oriented templates to generate instructions for recommendation
tasks through instruction tuning. In this work, considering the generalization ability of LLM to
various domains, we utilize ChatGPT to collaborate with our AutoDisenSeq model, where the
pretrained knowledge of LLM and specific knowledge of the AutoDisenSeq are combined to improve
the recommendation performance, especially for the cold-start recommendation scenario.

3 Notations and Preliminary
Sequential recommendation require a sequence of user–item interactions as data for model learning.
In this work, the training data is denoted as {B (=) }#==1, e.g., the sequence of user clicks on items. Here
# is the number of users and B (=) = [B=1 , B=2 , B=3 , ..., B=<] is the ordered sequence of items clicked by
user =, where< is the number of user clicks, and B=< ∈ {1, 2, · · · ,) } means that the latest item clicks
made by user =. We focus on the candidate generation phase of modern recommender systems,
whose task is to predict the next item that a user is likely to click on among all possible options
based on the observed sequence. For this task, we need to build a sequence encoder i\ (·) and an
item embedding table N ∈ R)×� . The encoder takes a sequence B (=) representing user’s recent
clicks as input and outputs the representation of the sequence i\ (B (=) ) ∈ R ×� . In this article, the
representation consisting of  �-dimensional vectors is expected to be disentangled, preserving
user’s intention across  different latent categories. Through utilizing disentangled representation,
the model estimates the probability that user = will click item 8 by measuring the similarity between
i\ (B (=) ) and N 8 in the vector space.

For most of the current RS, it is not only necessary to capture users’ long-term preferences
across different sessions as the conventional recommendation does, but also extremely important
to simultaneously model users’ short-term interest in a session (or a short sequence). To satisfy the
above requirements, attention mechanism becomes the mainstream solution. Essentially, the idea
behind is that the sequential output depends on some “relevant” part of the input that the model
should focus on consecutively. Another benefit is that attention-based approaches are relatively
easy to interpret. The widely adopted attention is defined as

�CC4=C8>=
(
&, ,+

)
= B> 5 C<0G

(
& )
√
3

)
+ , (1)

where & represents the queries,  represents the keys, and + represents the values (each row
represents an item). Intuitively, the attention layer calculates a weighted sum of all values, where
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the weight between query 8 and value 9 relates to the interaction between them. The scale factor
√
3

is to avoid overly large values of the inner product, especially in the case of high dimensionality.
For the self-attention method, it uses the same objects as queries, keys, and values. The self-

attention operation takes the embedding � as input, converts it to three matrices through linear
projections, and feeds them into an attention layer

(4; 5-�CC4=C8>=
(
�
)
= �CC4=C8>=

(
�,& , �,  , �,+

)
, (2)

where the projection matrices,& ,,  ,,+ ∈ R3×3 can make the model more flexible. For instance,
the model can learn asymmetric interactions (i.e., <query 8 , key 9 > and <query 9 , key 8 > can be
different).

We remark that the self-attention mechanism serves as an extremely crucial component in archi-
tectures such as Transformer which has been playing an important role in modeling sequential user
behaviors. Therefore, an optimal self-attention representation architecture is able to significantly
boost sequential recommendation performance.

4 AutoDisenSeq with LLM
In this section, we first introduce our proposed Intention Disentangled Sequence Encoding Strategy
which achieves a disentangled sequential recommendation with latent self-supervision, then we in
detail discuss Automated Attention Representation Search which uses NAS to discover the optimal
attention representation architecture for sequential recommendation, and finally we utilize the
rich general knowledge and power in text understanding of LLM to improve the recommendation
prediction accuracy. Last but not least, via incorporating all these elements, we obtain our proposed
LLM-guided AutoDisenSeq model, i.e., AutoDisenSeq-LLM.

4.1 Intention Disentangled Sequence Encoding
4.1.1 Sequence Encoder. A sequence encoder takes a sequence, i.e., user’s recent clicked items,

as input, and outputs an embedding representing the whole sequence. In the recommendation
scenario, Transformer encoders are the state-of-the-art encoders. Therefore, we adopt a recent
variant of Transformer, that is, the SASRec Encoder [60]. Specifically, SASRec builds a sequential
recommendation model by stacking self-attention layers and uses a set of trainable positional
embeddings to encode the order of items in a sequence. Beyond that, SASRec also reuses the
item embedding table so that the target would share the same encoding space with the input
sequence. However, we note that changing SASRec from single-head to multi-head does not induce
a great improvement. This may be due to that the multiple vector representations outputted by the
multi-head version of SASRec fail to achieve semantic disentanglement and hence do not surpass
the single vector representation, which already captures most of the information.

4.1.2 Disentangle the Latent Intentions. Based on the SASRec sequence encoder, we further
propose to add a disentanglement layer, which follows a single-head SASRec encoder, to derive the
multiple intentions buried in the encoding as well as utilizing the expressive power of SASRec. Let
{I (=)1 , I

(=)
2 , · · · , I (=)< }, where I (=)

8
be the output of a single-head SASRec encoder as 8 position, i.e.,{

I
(=)
1 , I

(=)
2 , · · · , I (=)<

}
= (�('42

({
B
(=)
1 , B

(=)
2 , · · · , B (=)<

})
. (3)
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The disentanglement layer starts by clustering encoding z to a set of hyper prototypical intention
representations under  latent categories, that is {21, 22, · · · , 2 }, where 28 ∈ R� , 8 = 1, 2, · · · ,  .

@
(: )
8

=

exp
[

1√
�
LayerNorm1

(
I
(=)
8

)
· LayerNorm2 (2: )

]
∑ 
B=1 exp

[
1√
�
LayerNorm1

(
I
(=)
8

)
· LayerNorm2 (2B )

] , (4)

where LayerNorm represents a layer-normalization layer, which is distinguished through subscripts.
We use cosine instead of dot product to reduce mode collapse, that is where most candidates are
assigned to the same category due to the findings of previous work [90].

The clustering procedure derives @ (: )
8

, which naturally measures the similarity between the
intention at position 8 , i.e., I (=)

8
and latent category : . We further calculate the relation between

I
(=)
8

and the user’s future intention

@8 =

exp
[

1√
�
I
(=) ′
8
· LayerNorm3

(
I
(=)
"

)]
∑<
B=1 exp

[
1√
�
I
(=) ′
B · LayerNorm3

(
I
(=)
"

)] , (5)

where I (=)
"

= "< + I (=)< + b′ and I (=)
′

B = LayerNorm4

(
" B + I (=)B

)
+ RELU

(
W)

(
LayerNorm4

(
" B +

I
(=)
B )

)
+ b

)
. Here " , b, b

′ ∈ R� and W ∈ R�×� are all trainable parameters, and " B serves as a
positional embedding for position B . Since the latest action usually plays the most important role in
prediction, we use I (=)

"
to stand for user’s probable future intention and calculate the similarity

between each I (=)
8

and I (=)
"

by clustering, adding b, b
′ and W to simulate bias and transformation.

Finally, given @8 and @ (: )8
, we can aggregate the intention under each latent category throughout

the positions to derive the :th disentangled sequence encoding:

i
(: )
\

= LayerNorm5

(
#: +

C∑
8=1

@
(: )
8
· @8 · I (=)8

)
, (6)

where : = 1, 2, · · · ,  and #: ∈ R� represents bias for latent category : . Note that two different
sets of {#8 } 8=1 are used for encoding input sequence and label sequence, respectively.

4.1.3 Seq2Seq Training Strategy. In this section, we discuss our Seq2Seq training strategy which
optimizes Sequence-to-Item (S2I) loss and Sequence-to-Sequence (S2S) loss simultaneously.
Each element in a mini-batch B is a set of sampled sequence from the training set {(=,<) : 1 ≤
= ≤ # }. We divide each training sample into an earlier sequence and its corresponding future
sequence. We denote the earlier sequence as B (=)1:8 =

[
B
(=)
1 , B

(=)
2 , ..., B

(=)
8

]
and the future sequence

as B (=)
8+1:< =

[
B
(=)
8+1 , B

(=)
8+2 , ..., B

(=)
<

]
. From Section 4.1.2, we derive an intention disentangled sequence

encoder i\ (·). The input of the encoder is the earlier sequence B (=)1:8 . The output of the encoder is  
vectors in �-dimensional space which are denoted as i (: )

\

(
B
(=)
1:8

)
, representing a user’s intention

for  different latent item categories. In addition, if the input sequence B (=)1:8 does not contain any
items under the :th latent category, we assume that the value of i (: )

\

(
B
(=)
1:8

)
is a temporary noise

vector. In general, i (: )
\

(
B
(=)
1:8

)
can also be regarded as a prototype item, i.e., a pseudo item that

summarizes the clicked items under the :th latent category.
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(2� Loss. The (2� loss is widely used in sequential recommendation tasks. Its input is the user’s
historical behavior sequence, and its label is the user’s next behavior. In other words, the (2�
training strategy generally takes the interaction sequence before the 8th moment as input and takes
the 8 + 1th moment as supervised label information to train the model. It is useful when training an
encoder and aligning the vector space of sequences and items in a relatively short period of time.
The objective function of (2� loss is defined as follows:

L(2� (\,B) =
∑
(=,<) ∈B

L(2� (\, =,<) (7)
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where ℎ (=)
8+1 ∈ R� is the representation of item B

(=)
8+1 . The item embedding table of row B

(=)
8+1 can be

denoted as � ∈ R"×� .

(2( Loss. We argue that only considering the (2� loss is short-sighted, which may run the
risk of resulting in a lack of diversity in recommendations. As such, the (2( employed by our
Seq2Seq training strategy uses the user’s historical sequence to predict the user’s possible future
sequence, which benefits in more robustness and diversity. The objective function of (2( loss is
defined as follows:

L(2( (\,B) =
∑
(=,<) ∈B

 ∑
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where we scale the dot product scores by a factor of 1√
�

because the last layer of the encoder is a
layer-normalization one, and the scaling factor helps convergence. Here, the softmax is normalized
over the samples that appear in the current mini-batch B instead of all samples in the training set
to reduce computational complexity. We use the reversed sequence B (=)

<:8+1 instead of the original
B
(=)
8+1:< , because our encoder weights the items in the sequence according to their temporal order
and we want the items closer to position 8 to receive higher weights. Moreover, only a selected
subset of (B, = {L(2( (\, =,<, :) : (=,<) ∈ B, 1 ≤ : ≤  } should be included for training.
For instance, if the input sequence B (=)1:8 shares intention categories {: : : ∈  

′ } with label
sequence B (=)

8+1:< rather than the whole set {: : 1 ≤ : ≤  }, then we should only use : ∈  ′ , i.e.,
{L(2( (\, =,<, :) : (=,<) ∈ B, : ∈  

′ }. In our method, the threshold g is the d_ · |B| ·  eth smallest
value in (B, , where _ ∈ [0, 1] is a hyper-parameter. This is based on the assumption that the
smaller the loss, the higher the probability that the input and the label sequence share the same
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intention under the corresponding latent category. In particular, _ is incorporated as a mask to
filter L(2( (\, =,<, :) with a large (2( loss, indicating that the input and the label sequence do not
share the same intention under latent category : . As such, this item is regarded as a noise and
should not be included in training. _ lies in [0, 1], which means we only keep the smallest _ percent
of the whole L(2( set.

However, the (2( loss still suffers from two problems. First, it is more difficult to construct future
sequences of behaviors than predict a single item, so it may not converge; second, the user’s future
behavior may contain multiple intentions and not every intention can be predicted from the earlier
behavior. To sum up, (2( strategy should not completely replace the (2� strategy, hence, we derive
the following (4@2(4@ training loss which takes the advantages of both (2( and (2� strategies into
account

L(4@2(4@ (\,B) = L(2� (\,B) + L(2( (\,B), (13)

where \ represents the model parameters. We need to note that our designed loss functions (see
the numerators in Equations (9) and (12)) encourage the model to preserve different information in
i
(: )
\

than the other : − 1 parts. Therefore, the disentanglement across different latent categories is
ensured.

Based on the derived intention disentangled sequence encoder and the end-to-end training
strategy, we have already completed the whole recommendation task, where we can recommend
new items to users by the similarity between items and the input sequence in the vector space
to sort the candidates and make predictions. However, the self-attention layers in the sequence
encoder, i.e., SASRec, are fixed, making it difficult to find the optimum architecture and limiting its
capabilities to effectively adapt to various environments.

4.2 Automated Attention Representation Search
In this section, we propose an automated framework that automates the self-attention representation
in our sequence encoder. In order to achieve the optimum performance, it is necessary to search
for the attention representation along with the other components of the deep neural network to
achieve the global optimum. Therefore, our search space contains both the original search space of
NAS and the attention representation.

4.2.1 Attention Representation Search Space. The search space defines the scope of the search,
which typically contains the type and number of layers as well as the type of connections and the
parameters within. A modern neural network can be considered as a set of layers with optional
connections between any two of the layers. More specifically, the layers can be treated as information
aggregator, adding all the information it receives and processing it before passing it to the next
layer. Therefore, we can simplify all the original layers to be the same type, i.e., addition layer.

Since the hyper-parameters depend on the type of operation, the result of parameterization
for search space is not fixed-length but conditional. We formulate the source layer and operation
selection processes as the following equation:

(& = -,& , ( = -,  , (+ = -,+ , (14)

& =$&
(
(&

)
,  =$ 

(
( 

)
,+ =$+

(
(+

)
, (15)

where (& , ( , and (+ are the input source layers, $& , $ , and $+ are operation choices selected
from the original operation library, and ,& ,+ are the outputs. We automate the design of attention
representations by introducing such a novel aggregation layer called attention layer and calculate
attention as follows:

& =$&
(
(&

)
,  =$ 

(
( 

)
,+ =$+

(
(+

)
, (16)
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�CC4=3&−> = (8<(&, ), (17)
$DC = �CC4=3&−> + . (18)

In conclusion, the architectures can be described as a bunch of choices. For each layer, we search
for the layer type and determine its source layers and operations.

4.2.2 Search Space Complexity Analysis. Assume that the number of hidden layers is, , and
the size of the primitive operation pool is 1, then the total number of architectures included in the
defined search space above is

∏,
:=1

(
:212 + :313

)
∈ O

(
=!413,

)
. However, this search space is still

difficult for searching since it contains many isomorphic architectures. Therefore, we propose two
constraints to further reduce the complexity without harming expressivity.

Constraint 1. We first constrain the architecture to be a chain by forcing each layer to have
at least one connection from its last layer. For the addition layer and the attention layer, input
connection and query connection are bind to the last layer, respectively. Moreover, we also restrict
the choices of these operations to be nonzero. These constraints shape a chain neural network,
where the information mainly flow along the skeleton. This chain-like macro search space is widely
adopted in previous NAS works [40, 43].

Constraint 2. For the attention layer, we further bind the key and value connection to have the
same source layer. This is due to the presumption that key and value serve as memory in attention
blocks, thus should have similar semantic meanings [93, 100].

With the constraints mentioned above, the complexity of the search space is reduced to
,∏
:=1

(
1 (1 − 1): + (1 − 1)3:

)
∈ O

(
=!213=

)
, (19)

which greatly eases the pressure for NAS while still retaining the high expressive power.

4.2.3 Search Algorithm. The search for the optimum architecture generally can be formulated
as a bi-level optimization problem

0∗ = argmin
0∈A

!E0;
(
0,F∗ (0)

)
,

B .C . F∗ (0) = argmin
F∈, (0)

!CA08= (0,F),
(20)

where A stands for the search space, 0 is a candidate architecture in A,, (0) is the parameter space
given the fixed architecture 0,F∗ (0) is the best parameter in, (0), and 0∗ is the best architecture of
the task and the output of NAS. Solving the bi-level optimization problem in Equation (20) directly
can be resource intensive because the architecture needs to be fully trained from scratch for the
internal optimization. To make the search process more efficient, the bi-level optimization can be
split into two separate optimization problems

0∗ = argmin
0∈A

!E0;
(
0,F∗ (0)

)
,

B .C . F∗ (0) = argmin
F∈,

E0∼Γ (A)!CA08= (0,F),
(21)

where E0∼Γ (A) is the prior architecture distribution of 0 ∈ A, and, is the trainable weights
of the supernet, which contains all the architectures in the search space and shares the set of
parameters with them. The process reduces the time cost since optimizing the supernet is quite
faster than training all the architectures from scratch. After deriving the parameters of the supernet,
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we perform genetic algorithm in a single path one-shot manner [43] to search for the optimum
architecture

0∗ = argmin
0∈Γ (A)

!E0; (0,F∗ (0)), (22)

where we randomly sample architectures 0 ∈ Γ(A) and perform crossover, mutation as in genetic
search to find the best architecture on the validation set. We note that 0 inherits its weight from
the weight of the supernetF∗ asF∗ (0), and the search process only requires inference, thus being
effective.

4.2.4 Context-Aware Parameter Sharing Technique. In our search space, the parameters of the
connections depend heavily on its contexts, which are the type of layers that the connections are
connected with. Thus, directly sharing the parameters of the same operations at the same places
without considering the contexts as in previous works fails to model the specific characteristics of
each architecture.

Therefore, in our model, we only share parameters within the same contexts. In our proposed
automated neural network, there are two types of layers, namely the original addition layer and
the added attention layer. Hence, naturally there are four types of connections, with the random
combination of addition layer and attention layer. In addition, when the target layer is an attention
layer, the connection is needed to be distinguished among Query, Key, and Value, respectively. This
raises the total amounts of contexts to eight, and for each of these contexts, we assign independent
parameters for a single connection in the supernet. Although this technique increases the total
parameters by eight times, we only sample a single sub-architecture to optimize at each step using
Monte-Carlo, keeping the total number of parameters same as before.

4.2.5 Automated Disentangled (4@2(4@ Training Strategy. We include the intention disentangled
sequence encoder into the automated framework and propose the whole end-to-end learning
objective. Via putting all the objectives together, the whole model achieves high performance
in recommendation while maintaining an automatic training procedure free of human labor.
Specifically, we optimize the following loss to train our model:

!>BB = L (E0; )
(4@2(4@

(
0, argmin

\
E0′∼Γ (�)L (CA08=)(4@2(4@ (0

′, \ )
)
, 0 ∈ �. (23)

The meaning of the symbols is the same as in Sections 4.2.3 and 4.1.3. As such, the learning
objective of our proposed AutoDisenSeq model is a joint optimization of both model parameters,
i.e., intention disentangled Seq2Seq loss and model architectures, i.e., automated representation
search. The overall training process is shown in Figure 1, and the detailed optimization procedure is
illustrated in Algorithm 1. In the inner loop, we use the gradient descent to update the parameters
and after the parameters are optimized, we use EA to search the best architecture through the
validation loss.

4.3 LLM-Guided Sequential Recommendation
While the proposed AutoDisenSeq model with Automated (4@2(4@ training strategy is effective,
it can only obtain existing behavioral knowledge without accessing general knowledge of the
candidate items, e.g., AutoDisenSeq only has knowledge of the training dataset but does not
know some general intentions of users. Therefore, we proposed AutoDisenSeq-LLM, an LLM-
guided variant that utilizes LLM to incorporate the general knowledge may further improve the
recommendation performance.

Specifically, a pretrained LLM (ChatGPT, in this article) is asked to determine whether to modify
the prediction results of the AutoDisenSeq recommendation model, given the item descriptions,
i.e., title of a movie, content and price of a video game, and so on. Since the abilities of the base
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Fig. 1. The overall training procedure of the proposed AutoDisenSeq model. The history item sequence of
the target users is first mapped into the item embedding space via the learnable item embedding function.
Then, the Transformer-based intention disentangled sequence encoder, whose self-attention representation
architecture is tailored to reach optimal performance for the current recommendation task, will be employed
to obtain disentangled latent representation for the whole history sequence of the target user. As we can
observe from the figure, the disentangled sequence representation may contain different blocks of dimensions
indicating different latent categories (e.g., Category X, Y, and Z ). A similar procedure will be used for ground
truth item sequence to obtain the disentangled latent sequence representation. To jointly discover the
optimal attention representation architecture as well as the model parameters, the (4@2(4@ training strategy
simultaneously optimizing the Sequence-to-Sequence ((2() loss and Sequence-to-Item ((2� ) loss will be
employed as the objective function, which explicitly considers various categories for model training.

recommendation model are relatively strong, LLM only plays the role of denoising and refining. We
discover that the Top-5 items from the recommended results are of high confidence, thus, we use
LLM to only finetune the results, rearranging the recommendation list except for the Top-5 items.
Figure 3 illustrates an example of the interaction process in which LLM replies with the sorted
recommendation list based on item descriptions. In the carefully designed prompt, we organize
the information, including commands and descriptions in an easy-to-understand manner, in order
that LLM can comprehend and respond accurately. The overall recommendation procedure of our
proposed AutoDisenSeq-LLM model is shown in Figure 2.

5 Empirical Experiments
We conduct empirical experiments to validate the performance of our approach by comparing our
proposed AutoDisenSeq and AutoDisenSeq-LLM models with several state-of-the-art methods on
four real-world datasets. The results show that both AutoDisenSeq and AutoDisenSeq-LLM are
powerful sequential recommendation models with automatic attention representation mechanism,
beating all other baselines in terms of recommendation accuracy. The tasks and datasets are
introduced in Section 5.1. The descriptions of comparative approaches are presented in Section 5.2.
The implementation details are described in Section 5.3. Experimental results and analyses are
shown in Section 5.4.
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Algorithm 1: Automated Disentangled Sequential Recommendation (AutoDisenSeq)

Input: Click sequence B (=) for each user =, dividing into earlier sequence
{
B
(=)
1 , ..., B

(=)
8

}
and future

sequence
{
B
(=)
8+1 , ..., B

(=)
<

}
as input and label, respectively.

Output: The disentangled representation for user =, i\
(
B (=)

)
.

1: function IntentionDisentangledSeqenceEncoder(B (=) , 0′)
2: I (=) ← SASEncoder

(
B (=) , 0′

)
3: for 8 = 1, 2, · · · ,< do
4: for : = 1, 2, · · · ,  do
5: @

(: )
8
←IntentionClustering

(
I
(=)
8
, 2:

) (
Equation (4)

)
6: end for
7: end for
8: for 8 = 1, 2, · · · ,< do
9: @8 ←FutureIntentionRelation

(
I
(=)
8
, I (=)

) (
Equation (5)

)
10: end for
11: for : = 1, 2, · · · ,  do
12: i

(: )
\
←IntentionAggregating

(
@ (: ) , @, I (=)

) (
Equation (6)

)
13: end for
14: return i\ =

[
i
(1)
\
, i
(2)
\
, · · · , i ( )

\

]
15: end function
16: while not converged do
17: for every mini-batch do
18: i\

(
B
(=)
1:8

)
←IntentionDisentangledSeqenceEncoder(B (=)1:8 , 0

′)

19: i\

(
B
(=)
<:8+1

)
←IntentionDisentangledSeqenceEncoder(B (=)

<:8+1, 0
′)

20: L(2� ← !>BB(2�

(
ℎ
(=)
8+1, i\

(
B
(=)
1:8

))
21: L(2( ← !>BB(2(

(
i\ (B (=)1:8 ), i\

(
B
(=)
<:8+1

))
22: L(4@2(4@ ← L(2� + L(2(
23: \ ← argmin\ ′ E0′∼Γ (�)L (CA08=)(4@2(4@

(
0′, \ ′

)
24: end for
25: end while
26: 0 ← argmin0∈� L (E0; )(4@2(4@

(
0,E0′∼Γ (�)L (CA08=)(4@2(4@ (0

′, \ )
)

5.1 Datasets and Evaluation Metrics
5.1.1 Datasets Description. We conducted experiments on four datasets that were collected from

three real-world platforms with different domains and densities. The statistics of these datasets
after pre-processing are summarized in Table 1.

—MovieLens-1m (ML-1m): The ML-1m dataset [45] consists of 1 million ratings from 6,000
users on approximately 4,000 movies. It includes user demographics, movie details, and
timestamps. In this work, we use the titles and genres of the movies as corresponding attributes
for the LLM.
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Fig. 2. The overall recommendation procedure of our proposed AutoDisenSeq with LLM (AutoDisenSeq-LLM).
During the recommendation phase, the history item sequence of the target user will first be mapped to the
item embedding space and then be passed through the sequence encoder with automated representation
architecture to form the latent sequence representation. The candidate items will also be mapped to the item
embedding space before calculating similarity with the history latent sequence representation. The candidate
items will be sorted in descending order based on the calculated similarity (i.e., recommendation list by
AutoDisenSeq). We empirically discover that the Top-5 items in the recommendation list by AutoDisenSeq
are of high confidence. Therefore, a pretrained LLM (i.e., ChatGPT) is employed to finetune the results via
reordering the potentially promising items except for the Top-5 items in the recommendation list returned
from AutoDisenSeq to obtain the refined recommendation list from AutoDisenSeq-LLM. For instance, the
ground truth item T is first ranked far after item F in the recommendation list by AutoDisenSeq and will be
reordered to the six place in the refined recommendation by AutoDisenSeq-LLM after the finetuning process
by the LLM. This example demonstrates the necessity and efficacy of AutoDisenSeq-LLM through utilizing
the text understanding power of LLM to further improve the recommendation accuracy.

Table 1. Dataset Statistics

Dataset Users Items Actions Density (%)
ML-1m 6,038 3,308 841,827 4.214
Steam 120,269 22,884 2,852,115 0.104
Beauty 12,060 35,578 165,925 0.038
Game 7,973 19,671 141,354 0.090

—Steam: The Steam dataset [60] is crawled from a large online video game distribution platform
called Steam. It contains over 2 million users and approximately 15,000 games. In this work,
we utilize the title, price, and category of the video game as the attributes for the LLM.

—Amazon Beauty and Amazon Game: The Amazon Review Dataset [99] is a classic dataset for
RS, which is divided into subsets, such as Books, Electronics, Movies, TV, CDs, and so on.
It contains 142.8 million product reviews (ratings, text, help polls), metadata (descriptions,
category information, price, brand, and image features), and links (also viewed/also purchased
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Fig. 3. Showcases of interactions with LLM (ChatGPT) onML-1m, Steam, Amazon Beauty, and Game datasets
for experiments (from left to right). We carefully design prompts so that the commands and descriptions fed
into the LLM are easy to understand by ChatGPT. Take the Amazon dataset as an example, and we design the
prompt as: Input: Item Descriptions List: [5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19,20]; (ids with descriptions)
User History List:…; Given the descriptions and categories of user’s recently bought products on the Amazon
platform in the user history list, reorder the item descriptions list to reflect these interests, but keep changes
to a minimum. (13 is the ground truth item) Then, the LLM will reply with the refined recommendation list
in the form of a Python-like list as follows: [13,5,6,7,8,11,9,10,12,14,15,16,17,18,19,20]. ML-1m, MovieLens-1m.

charts) on Amazon.com from May 1996 to July 2014. In our experiments, we select two
subcategories: (1) Beauty and (2) Game, and use the granular categories and brands of the
products as their attributes for the LLM.

For all datasets, we group the interaction records by the user and sorted them by interaction
timestamp in ascending order. Following [110, 118], we only adopt the 5-core dataset, filtering out
unwanted items and inactive users with less than five interaction records.

5.1.2 Evaluation Metrics. In our experiments, we adopt widely used metrics in related work to
evaluate the performance of our model, including top-k hit ratio (HR@k) and top-k normalized
discounted cumulative gain (NDCG@k). In our experiment on overall recommendation accuracy,
we report results for HR@10 and NDCG@10.

We follow the previous work and apply the leave-one-out method for evaluation. Specifically,
for each user interaction sequence, the last item was used as test data, some items before the last
one as validation data, and the remaining as training data. Since the item set is massive, taking all
items as candidates for testing is time-consuming. Therefore, we follow BERT4Rec’s advice and pair
each authentic item in the test set with 100 negative items randomly sampled according to their
popularity, which is a common practice in the literature. The recommendation task then becomes
to identify which item among these 101 items is the ground-truth next item for each user. We
calculate all metrics based on the ranking of the items and report the average score of the overall
test users. Higher values in all these metrics reflect better recommendation performance.

5.2 Comparative Approaches
Baselines. The following five baseline methods are used for comparisons.

— ICLRec [17]: This model learns user’s latent intents via contrastive learning and leverages
them effectively for sequential recommendation.
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—STOSA [34]: This model treats the embedding of items as a stochastic Gaussian distribution,
and they propose a module using Wasserstein distance to calculate the similarity between
different items.

—BERT4Rec [117]: This model adopts the Cloze objective to the sequential recommendation
and predicts the masked item by jointly using the left and the right context.

—SASRec [60]: This model effectively utilizes the self-attention mechanism and achieves good
performance in sequence recommendation.

—DSSRec [91]: This model adopts a SASRec encoder and combines disentangled representation
learning and self-supervised learning to balance the weights of multiple interests.

Our Proposed Models. We compare our proposed AutoDisenSeq and AutoDisenSeq-LLM models
with the five baselines.

—AutoDisenSeq: Our proposed Automated Disentangled Sequence Representation model, which
learns user’s latent sequence representation in a disentangled manner with optimal self-
attention representation architecture for sequential recommendation.

—AutoDisenSeq-LLM: Our proposed AutoDisenSeq with LLM. This model utilizes the power of
LLM in understanding textual information to further improve the recommendation accuracy
via finetuning the results returned by AutoDisenSeq.

5.3 Implementation
We follow the experimental setup described in BERT4Rec [117], a widely used state-of-the-art
recommendation model based on BERT. We implement our model in PyTorch and initialize the
parameters using default initialization. We use the Adam [62] optimizer for mini-batch gradient
descent. We set the learning rate to 0.001 and batch size to 256 and cap the maximum sequence
length to 50 for all four datasets. We follow the structure of a single-head SASRec [60] encoder
and automate the choices for inner layers’ type and connections. Then, we tune the other hyper-
parameters using ASHA [75] implemented by Ray Tune [78]. Specifically, we run the ray tune
with 500 samples under each setting, with the hyper-parameter search space specified as follows:
� ∈ {64, 128, 256}, number of hidden layers ∈ {2, 3, 4, 5, 6}, _ ∈ {0.1, 0.2, · · · , 0.6}.

5.4 Experimental Results
5.4.1 Recommendation Accuracy. Table 2 presents the overall recommendation accuracy of

all the methods on the four datasets. From the results, we observe that our proposed model, i.e.,
AutoDisenSeq-LLM, consistently outperforms all the baselines in terms of HR@10 and NDCG@10,
respectively. This demonstrates the benefits of the proposed disentangled Seq2Seq recommendation,
which learns user’s latent intentions and builds the future sequence as a whole and automated
attention representation, which automatically searches for the best architecture and LLM denoising.

5.4.2 Ablation Study.

Model Components. We perform ablation study of multiple variants of the proposed method on
dataset ML-1m and list the results in Table 3. Variant (1) of our method only optimizes traditional
(2� loss, removing all the other parts including disentangled (4@2(4@ training, automated attention
representation search, and LLM denoizing. Variant (2) of our method adds disentangled (4@2(4@
training based on variant (1), and variant (3) additionally searches the attention representation
using NAS. We observe a performance drop in variant (2) compared to variant (3), and variant (1)
performs even worse. As LLM excludes the Top-5 items when denoizing, it only affects HR@10
and NDCG@10, and both improve in variant (4), i.e., the proposed AutoDisenSeq-LLM model. The
results demonstrate the integrity of the whole method and the effectiveness of each component,
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Table 2. The Overall Recommendation Accuracy Comparison between Our Proposed Model
and the Baselines

Dataset Metric ICLRec STOSA BERT4Rec SASRec DSSRec AutoDisen AutoDisen
Seq Seq-LLM

ML-1m HR@10 0.1207 0.3170 0.6749 0.6570 0.6800 0.7040 0.7125
NDCG@10 0.0489 0.1365 0.4508 0.4258 0.4563 0.4733 0.4770

Beauty HR@10 0.1024 0.0779 0.2796 0.3520 0.3663 0.3726 0.3995
NDCG@10 0.0461 0.0346 0.1705 0.2296 0.2517 0.2498 0.2601

Game HR@10 0.1233 0.1406 0.3443 0.6251 0.6351 0.6390 0.6634
NDCG@10 0.0496 0.0591 0.2232 0.3989 0.4168 0.4191 0.4277

Steam HR@10 0.0783 0.1424 0.4651 0.5514 0.6212 0.6474 0.6605
NDCG@10 0.0360 0.0625 0.2809 0.2560 0.4057 0.4122 0.4176

Bold font denotes the winner.

Table 3. Ablation Study of Multiple Variants of Our Method on Dataset ML-1m

Variants of Our Method
Evaluation Metrics

HR@1 HR@5 NDCG@5 HR@10 NDCG@10

(1) Without Disen-Seq2Seq, auto, and LLM 0.2263 0.5298 0.3843 0.6570 0.4258
(2) Without auto and LLM 0.2547 0.5656 0.4191 0.6800 0.4563

(3) AutoDisenSeq (without LLM) 0.2655 0.5871 0.4352 0.7040 0.4733
(4) AutoDisenSeq-LLM - - - 0.7125 0.4770

Bold values denote the best performance over each metric.

validating their important roles in the model’s final performances. Similar results hold on other
datasets as well.

Including vs. Excluding the Top-5 Candidate Items During LLM Reordering. On the one hand, we
discover the Top-5 items from the recommended candidates are of high confidence due to the
effectiveness of the AutoDisenSeq model. On the other hand, the prediction results of LLM may
have a certain degree of randomness and allowing it to rearrange the Top-5 candidate items may
run the risk of removing the hit (right) items from the Top-5 positions, thus deteriorating the
recommendation accuracy. Therefore, our proposed AutoDisenSeq-LLM model does not include the
items in the Top-5 positions of the candidate list for recommendation when conducting reordering.
We also perform experiments to validate our choice of excluding the Top-5 recommended items for
LLM reordering. We compare AutoDisenSeq (without LLM reordering), AutoDisenSeq-LLM (LLM
reordering excluding Top-5 candidates), AutoDisenSeq-LLM-Top5 (LLM reordering including Top-5
candidates) over all the four datasets, ML-1m, Beauty, Game, and Steam, whose results are shown in
Table 4. From the results, we can observe a significant performance drop when we include the Top-5
candidate items for LLM reordering under most experimental settings, which is even inferior to
AutoDisenSeq model that does not involve any LLM reordering.Therefore, we believe it is necessary
to employ LLM for finetuning the results via reordering the candidate list excluding Top-5 items.

5.4.3 Visualizations of the Optimal Architectures. In the previous sequential recommendation
models, we have to manually design the architecture of the sequence encoder, which is a time-
consuming and laborious process, and the outcome probably would not be the optimum structure.
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Table 4. Ablation Study of Whether to Include the Top-5 Candidate Items during LLM
Reordering

Dataset Variants of Our Method
Evaluation Metrics

HR@1 HR@5 NDCG@5 HR@10 NDCG@10

ML-1m

AutoDisenSeq-LLM-Top5 0.2501 0.5512 0.4091 0.6638 0.4457

AutoDisenSeq 0.2655 0.5871 0.4352 0.7040 0.4733

AutoDisenSeq-LLM - - - 0.7125 0.4770

Beauty

AutoDisenSeq-LLM-Top5 0.1498 0.2666 0.2108 0.3404 0.2345

AutoDisenSeq 0.1533 0.2871 0.2224 0.3726 0.2498

AutoDisenSeq-LLM - - - 0.3995 0.2601

Game

AutoDisenSeq-LLM-Top5 0.2441 0.4680 0.3620 0.6037 0.4093

AutoDisenSeq 0.2324 0.5096 0.3773 0.6390 0.4191

AutoDisenSeq-LLM - - - 0.6634 0.4277

Steam

AutoDisenSeq-LLM-Top5 0.2189 0.4672 0.3465 0.6197 0.3957

AutoDisenSeq 0.2267 0.4884 0.3609 0.6474 0.4122

AutoDisenSeq-LLM - - - 0.6605 0.4176

AutoDisenSeq-LLM-Top5 denotes the variant including Top-5 candidate items for LLM reordering. Bold values
denote the best performance for each dataset.

We visualize the final searched architecture for the four datasets in Figure 4, where ML-1m and
Steam have 5 hidden layers, and the rest 2 have 10 hidden layers. We can observe that the final
structure is complicated, especially on dataset Beauty and Game. For example, Layer 9 in the
architecture for dataset Beauty has value and key connection from all the way back to Layer 2.
Moreover, the choice of addition layer and attention layer also plays an important role in the final
structure. It is very difficult to obtain this structure manually, let alone a deep neural network
with many more hidden layers, which validates the necessity and effectiveness of our proposed
automated attention representation search.

5.4.4 Cold-Start Setting. Cold-start problem is frequently encountered in the RS. In our experi-
ment, we limit the length of input sequence, i.e., user’s recent interaction items, in the training
and inference stage to simulate the scarce historical interaction information under cold-start set-
ting. Specifically, the maximum length of input sequence is set to 5, compared to 50 in normal
recommendation. The results are depicted in Figure 5. We observe that AutoDisenSeq-LLM still
outperforms other baselines (SASRec and DSSRec, two relatively strong ones among all baselines)
significantly in general, which indicates the strong practicality of our proposed model in real
recommendation scenarios. The comparisons between AutoDisenSeq and AutoDisenSeq-LLM also
demonstrate that the improvement of AutoDisenSeq-LLM under cold-start setting is largely brought
by the incorporation of LLM. We analyze this may be the reason that LLM has rich prior knowledge
through pretraining on large-scale data. The cold-start problem mainly arises due to the lack of
prior information on user preferences, which may be appropriately mitigated by the extensive prior
knowledge inherently carried by LLM.

5.4.5 Time Consuming Comparison. In this section, we compare the difference in training time
between our method and other baselines in Table 5. Firstly, since our method introduces more
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Fig. 4. Visualizations of the searched self-attention representation architectures on ML-1m, Steam, Amazon
Beauty, and Game datasets (the best view in color). Different colors of arrows denote different types of
connections (vale connection, key connection, query connection, and feature connection), and different colors
of blocks indicate different types of layers (addition layer and attention layer). We observe that ML-1m
and Steam require the optimal number of layers of 5, while Amazon Beauty and Game require the optimal
layer number to be 10. Besides, it is obvious that different datasets indeed have different optimal attention
representation architectures, validating the necessity of our proposed AutoDisenSeq model on searching the
optimal architectures for different datasets.

Table 5. Comparison on Time Consumption (Minute) of
Different Methods on the Four Datasets

Method Dataset

ML-1m Beauty Steam Game

SASRec 80 240 1,500 115
DSSRec 600 550 4,500 250
AutoDisenSeq-LLM 900 600 6,000 300
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Fig. 5. Recommendation accuracy under cold-start setting in terms of HR@10 and NDCG@10 on the four
datasets. We can observe that our proposed AutoDisenSeq-LLM is able to significantly outperform state-of-
the-art Transformer-based sequential recommendation approaches in the challenging cold-start scenario over
all four datasets. We also remark that the improvement of AutoDisenSeq-LLM over baselines mainly comes
from the incorporation of LLM, which obtains rich prior knowledge through pretraining on large-scale data.

Fig. 6. Analysis of the threshold parameter _ which determines whether the input and the label sequence
share same intention under this latent category. In particular, _ = 0 is equivalent to not using (2( training.

complicated modules and uses NAS to automatically search for the optimum structure, it is natural
that our method will cost more time in training, which is necessary as a tradeoff for performance
and it saves the time of manually searching for the best parameters as well. From the results,
we can also observe that the extra time consumed compared to SASRec mainly comes from the
disentangled part in Seq2Seq training since the time gap between AutoDisenSeq-LLM and DSSRec
is much shorter than that between DSSRec and SASRec. This demonstrates the relative efficiency
of our proposed automated attention representation search, especially the necessity of the two
constraints which reduce the time complexity greatly.

5.4.6 Sensitivity Analysis. In Section 4.1.3, a hyper-parameter _ is introduced to control the
confidence threshold that the input sequence and label sequence share the same intent under a
specific latent category : . This parameter is critical to our (2( training, since _ = 0 implies that our
model is using (2� training only, while large _ value tends to allow more (2( samples.

We conduct experiments on dataset ML-1m with different values of _ and report the results in
Figure 6. We observe a performance drop when setting the threshold too strict, i.e., _ = 0, or too
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loose, i.e., _ = 0.5. A strict threshold will exclude too many (2( samples, reducing the effectiveness
of (2( training, while a loose threshold will include some irrelevant (2( samples, deteriorating the
performance as well. Similar results hold on other three datasets, although the optimum value of _
may vary.

6 Conclusion and Future Work
In this article, we first propose an AutoDisenSeq model, which is able to discover the optimal self-
attention representations capable of capturing sequential patterns in sequential recommendation
through NAS while keeping intention disentangled in latent space. The proposed AutoDisenSeq
model is able to provide us with accurate architecture performance estimations and great flexibility
for disentanglement of latent intention representation. Furthermore, we propose AutoDisenSeq-
LLM, an LLM-guided model for sequential recommendation, where the domain-specific knowledge
learned by automated disentangled Transformer-based sequential recommendation model and the
general knowledge carried in the LLM are combined to provide more precise recommendation
for the users. Extensive experiments on four real-world datasets are conducted to show that our
proposed AutoDisenSeq and AutoDisenSeq-LLM models both beat existing baseline methods in
overall recommendation and cold-start recommendation scenarios. To conclude, we note that the
proposed automated disentangled sequential modeling mechanism for the Transformer-based
architecture can help to adapt to various scenarios and datasets, and the LLM as an auxiliary
enhancer can further improve the recommendation accuracy with its prior knowledge.

This work can be regarded as a prior work in collaborating the domain-specific model and the
LLM in recommendation. Future works such as finetuning the LLM and the automated disentangled
sequence latent representation together in the training stage will be interesting and promising
direction that deserves further investigations.
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